# Math3066 algebra and logic semester 1 first assignment 2014

THE UNIVERSITY OF SYDNEY
MATH3066 ALGEBRA AND LOGIC
Semester 1

First Assignment

2014

This assignment comprises a total of 60 marks, and is worth 15% of the overall
assessment. It should be completed, accompanied by a signed cover sheet, and handed
in at the lecture on Thursday 17 April. Acknowledge any sources or assistance.
1. Construct truth tables for each of the following wﬀs:
(a)

(P ∨ Q) ∧ R

(b)

(P ∧ R ) ∨ Q

Use your tables to explain brieﬂy why
(P ∨ Q) ∧ R

|=

(P ∧ R ) ∨ Q ,

(P ∧ R ) ∨ Q

|=

(P ∨ Q) ∧ R .

but

(6 marks)
2. Use truth values to determine which one of the following wﬀs is a theorem (in
the sense of always being true).
(a)
(b)

P ⇒ Q⇒R

P ⇒Q ⇒R

P ⇒Q ⇒R ⇒ P ⇒ Q⇒R

For the one that isn’t a theorem, produce all counterexamples. For the one
that is a theorem, provide a formal proof also using rules of deduction in the
Propositional Calculus (but avoiding derived rules of deduction).
(8 marks)
3. Use the rules of deduction in the Propositional Calculus (but avoiding derived
rules) to ﬁnd formal proofs for the following sequents:
(a)

P ⇒ (Q ⇒ R ) , ∼ R

(b)

(P ∨ Q) ∧ (P ∨ R )

P ∨ (Q ∧ R )

(c)

P ∨ (Q ∧ R ) ⊢ (P ∨ Q) ∧ (P ∨ R )

P ⇒∼Q

(12 marks)

4. Let W = W (P1 , . . . , Pn ) be a proposition built from variables P1 , . . . , Pn . Say
that W is even if
W ≡ W ( ∼ P1 , ∼ P2 , . . . , ∼ Pn ) .
Say that W is odd if
W ≡ ∼ W ( ∼ P1 , ∼ P2 , . . . , ∼ Pn ) .
(a) Use truth tables to decide which of the following are even or odd:
(i) W = (P1 ⇔ P2 )

(ii) W = (P1 ⇔ P2 ) ⇔ P3

(b) Use De Morgan’s laws and logical equivalences to explain why the following
proposition is odd:
W=

P1 ∨ P2 ∧ P3 ∨ P1 ∧ P2

(c) Explain why the number of truth tables that correspond to propositions
n
n −1
in variables P1 , . . . , Pn is 22 , and, of those, 22
tables correspond to
2 n −1
tables correspond to odd propositions.
even propositions, and 2
(16 marks)
5. Evaluate each of

in Z11

3
9
10
1
,
,
,
,
5
7
10
9
and Z14 , or explain brieﬂy why the given fraction does not exist.
(8 marks)

6. Prove that the only integer solution to the equation
x2 + y 2 = 3 z 2
is x = y = z = 0.
[Hint: ﬁrst interpret this equation in Zn for an appropriate n.]
(10 marks)

## Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
\$26
The price is based on these factors:
Number of pages
Urgency
Basic features
• Free title page and bibliography
• Unlimited revisions
• Plagiarism-free guarantee
• Money-back guarantee
On-demand options
• Writer’s samples
• Part-by-part delivery
• Overnight delivery
• Copies of used sources
Paper format
• 275 words per page
• 12 pt Arial/Times New Roman
• Double line spacing
• Any citation style (APA, MLA, Chicago/Turabian, Harvard)

# Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

### Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

### Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

### Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.